首页> 外文OA文献 >Gaussian Process Decentralized Data Fusion and Active Sensing for Spatiotemporal Traffic Modeling and Prediction in Mobility-on-Demand Systems
【2h】

Gaussian Process Decentralized Data Fusion and Active Sensing for Spatiotemporal Traffic Modeling and Prediction in Mobility-on-Demand Systems

机译:高斯过程分散数据融合和主动传感用于移动点播系统中的时空流量建模和预测

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Mobility-on-demand (MoD) systems have recently emerged as a promising paradigm of one-way vehicle sharing for sustainable personal urban mobility in densely populated cities. We assume the capability of a MoD system to be enhanced by deploying robotic shared vehicles that can autonomously cruise the streets to be hailed by users. A key challenge of the MoD system is that of real-time, fine-grained mobility demand and traffic flow sensing and prediction. This paper presents novel Gaussian process (GP) decentralized data fusion and active sensing algorithms for real-time, fine-grained traffic modeling and prediction with a fleet of MoD vehicles. The predictive performance of our decentralized data fusion algorithms are theoretically guaranteed to be equivalent to that of sophisticated centralized sparse GP approximations. We derive consensus filtering variants requiring only local communication between neighboring vehicles. We theoretically guarantee the performance of our decentralized active sensing algorithms. When they are used to gather informative data for mobility demand prediction, they can achieve a dual effect of fleet rebalancing to service mobility demands. Empirical evaluation on real-world datasets shows that our algorithms are significantly more time-efficient and scalable in the size of data and fleet while achieving predictive performance comparable to that of state-of-the-art algorithms. Note to Practitioners-Knowing, understanding, and predicting spatiotemporally varying traffic phenomena in real time has become increasingly important to the goal of achieving smooth-flowing, congestion-free traffic in densely populated urban cities, which motivates our work here. This paper addresses the following fundamental problem of data fusion and active sensing: How can a fleet of autonomous robotic vehicles or mobile probes actively cruise a road network to gather and assimilate the most informative data for predicting a spatiotemporally varying traffic phen- menon like a mobility demand pattern or traffic flow? Existing centralized solutions are poorly suited because they suffer from a single point of failure and incur huge communication, space, and time overheads with large data and fleet. This paper proposes novel efficient and scalable decentralized data fusion and active sensing algorithms with theoretical performance guarantees. The practical applicability of our algorithms is not restricted to traffic monitoring [1]-[4]; they can be used in other environmental sensing applications such as mineral prospecting [5], precision agriculture, monitoring of ocean/freshwater phenomena (e.g., plankton bloom) [6]-[9], forest ecosystems, pollution (e.g., oil spill), or contamination. Note that the decentralized data fusion component of our algorithms can also be used for static sensors and passive mobile probes and, interestingly, adapted to parallel implementations to be run on a cluster of machines for achieving efficient and scalable probabilistic prediction (i.e., with predictive uncertainty) with large data. Empirical results show that our algorithms can perform well with two datasets featuring real-world traffic phenomena in the densely-populated urban city of Singapore. A limitation of our algorithms is that the decentralized data fusion components assume independence between multiple traffic phenomena while the decentralized active sensing components only work for a single traffic phenomenon. So, in our future work, we will generalize our algorithms to perform active sensing of multiple traffic phenomena and remove the assumption of independence between them.
机译:按需出行(MoD)系统最近成为一种有希望的单向共享车辆范例,可在人口稠密的城市实现可持续的个人城市出行。我们假设通过部署机器人共享车辆来增强MoD系统的功能,这些机器人可以自动在街上漫游,以备用户欢迎。 MoD系统的主要挑战是实时,细粒度的移动性需求以及交通流的感知和预测。本文提出了一种新颖的高斯过程(GP)分散数据融合和主动感应算法,用于MoD车辆车队的实时,细粒度交通建模和预测。从理论上讲,我们的分散数据融合算法的预测性能可保证与复杂的集中式稀疏GP近似值相同。我们得出共识过滤变量,仅需要相邻车辆之间的本地通信。从理论上讲,我们保证了分散式主动感应算法的性能。当使用它们收集信息数据以预测移动需求时,它们可以实现机队重新平衡以适应服务移动需求的双重效果。对现实世界数据集的经验评估表明,我们的算法在数据和舰队的规模上显着提高了时间效率和可伸缩性,同时实现了与最新算法相当的预测性能。给从业者的注意-实时了解,理解和预测时空变化的交通现象对于在人口稠密的城市中实现顺畅,无拥堵的交通这一目标变得越来越重要,这激发了我们在这里的工作。本文解决了以下数据融合和主动感知的基本问题:一群自动机器人车辆或移动探测器如何主动在道路网络上行驶,以收集和吸收最有用的数据,以预测时空变化的交通现象,例如机动性。需求模式或交通流量?现有的集中式解决方案不适合使用,因为它们会遭受单点故障的困扰,并且会因大型数据和舰队而导致巨大的通信,空间和时间开销。本文提出了具有理论性能保证的新型高效可扩展的分散数据融合和主动感知算法。我们算法的实际适用性不仅限于流量监控[1]-[4];它们可以用于其他环境传感应用中,例如矿产勘查[5],精密农业,海洋/淡水现象(例如浮游生物开花)[6]-[9],森林生态系统,污染(例如漏油)或污染。请注意,我们算法的分散数据融合组件还可以用于静态传感器和无源移动探测器,并且有趣的是,它适合于在机器集群上运行的并行实现,以实现高效且可扩展的概率预测(即具有预测不确定性) )与大数据。实证结果表明,在人口稠密的新加坡城市中,我们的算法在具有真实交通现象的两个数据集上表现良好。我们的算法的局限性在于,分散的数据融合组件假定多个交通现象之间具有独立性,而分散的主动传感组件仅适用于单个交通现象。因此,在未来的工作中,我们将推广算法以对多种交通现象进行主动感知,并消除它们之间的独立性假设。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号